Syntactically Guided Generative Embeddings for Zero-Shot Skeleton Action Recognition, arXiv 2021
Authors: Pranay Gupta, Divyanshu Sharma, Ravi Kiran Sarvadevabhatla

Abstract: We introduce SynSE, a novel syntactically guided generative approach for Zero-Shot Learning (ZSL). Our end-to-end approach learns progressively refined generative embedding spaces constrained within and across the involved modalities (visual, language). The inter-modal constraints are defined between action sequence embedding and embeddings of Parts of Speech (PoS) tagged words in the corresponding action description. We deploy SynSE for the task of skeleton-based action sequence recognition. Our design choices enable SynSE to generalize compositionally, i.e., recognize sequences whose action descriptions contain words not encountered during training. We also extend our approach to the more challenging Generalized Zero-Shot Learning (GZSL) problem via a confidence-based gating mechanism. We are the first to present zero-shot skeleton action recognition results on the large-scale NTU-60 and NTU-120 skeleton action datasets with multiple splits. Our results demonstrate SynSE's state of the art performance in both ZSL and GZSL settings compared to strong baselines on the NTU-60 and NTU-120 datasets.

NTU60-X: Towards Skeleton-based Recognition of Subtle Human Actions, arXiv 2021
Authors: Anirudh Thatipelli, Neel Trivedi, Ravi Kiran Sarvadevabhatla

Abstract: The lack of fine-grained joints such as hand fingers is a fundamental performance bottleneck for state of the art skeleton action recognition models trained on the largest action recognition dataset, NTU-RGBD. To address this bottleneck, we introduce a new skeleton based human action dataset - NTU60-X. In addition to the 25 body joints for each skeleton as in NTU-RGBD, NTU60-X dataset includes finger and facial joints, enabling a richer skeleton representation. We appropriately modify the state of the art approaches to enable training using the introduced dataset. Our results demonstrate the effectiveness of NTU60-X in overcoming the aforementioned bottleneck and improve state of the art performance, overall and on hitherto worst performing action categories.

Quo Vadis, Skeleton Action Recognition ?, arXiv 2020
Authors: Pranay Gupta, Anirudh Thatipelli, Aditya Aggarwal, Shubh Maheshwari, Neel Trivedi, Sourav Das, Ravi Kiran Sarvadevabhatla

Abstract: In this paper, we study current and upcoming frontiers across the landscape of skeleton-based human action recognition. To begin with, we benchmark state-of-the-art models on the NTU-120 dataset and provide multi-layered assessment of the results. To examine skeleton action recognition 'in the wild', we introduce Skeletics-152, a curated and 3-D pose-annotated subset of RGB videos sourced from Kinetics-700, a large-scale action dataset. The results from benchmarking the top performers of NTU-120 on Skeletics-152 reveal the challenges and domain gap induced by actions 'in the wild'. We extend our study to include out-of-context actions by introducing Skeleton-Mimetics, a dataset derived from the recently introduced Mimetics dataset. Finally, as a new frontier for action recognition, we introduce Metaphorics, a dataset with caption-style annotated YouTube videos of the popular social game Dumb Charades and interpretative dance performances. Overall, our work characterizes the strengths and limitations of existing approaches and datasets. It also provides an assessment of top-performing approaches across a spectrum of activity settings and via the introduced datasets, proposes new frontiers for human action recognition.